Three-dimensional spectral solution of the Schrödinger equation for arbitrary band structures

نویسندگان

  • A. Trellakis
  • U. Ravaioli
چکیده

We present a fast and robust method for the full-band solution of the Schrödinger equation on a grid, with the goal of achieving a more complete description of high energy states and realistic temperatures. Using fast Fourier transforms, the Schrödinger equation in the one band approximation can be expressed as an iterative eigenvalue problem for arbitrary shapes of the conduction band. The resulting eigenvalue problem can then be solved using Krylov subspace methods such as Arnoldi iteration. We demonstrate the algorithm by presenting an application, in which we compare nonparabolic effects in an ultrasmall metal–oxide–semiconductor ~MOS! quantum cavity and a MOS quantum capacitor at room temperature. We show that for the cavity structure the nonparabolicity of the conduction band results in a significant lowering of high-energy electronic states and reshaping of the electron density, whereas the states and density in the MOS capacitor remain relatively unchanged. © 2002 American Institute of Physics. @DOI: 10.1063/1.1502181#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution for one-dimensional independent of time Schrödinger Equation

In this paper, one of the numerical solution method of one- particle, one dimensional timeindependentSchrodinger equation are presented that allows one to obtain accurate bound state eigenvalues and functions for an arbitrary potential energy function V(x).For each case, we draw eigen functions versus the related reduced variable for the correspondingenergies. The paper ended with a comparison ...

متن کامل

A New Method for Calculating Propagation Modes of a One Dimensional Photonic Crystal (RESEARCH NOTE)

Photonic band-gap (PBG) crystals offer new dimensions of freedom in controlling propagation of electromagnetic waves. The existence of stop-bands in the transmission characteristic of these crystals makes them a suitable element for the realization of many useful microwave and optical subsystems. In this paper, we calculate the propagation constant of a one-dimensional (1-D) photonic crystal by...

متن کامل

Chebyshev Spectral Collocation Method for Computing Numerical Solution of Telegraph Equation

In this paper, the Chebyshev spectral collocation method(CSCM) for one-dimensional linear hyperbolic telegraph equation is presented. Chebyshev spectral collocation method have become very useful in providing highly accurate solutions to partial differential equations. A straightforward implementation of these methods involves the use of spectral differentiation matrices. Firstly, we transform ...

متن کامل

Investigation of analytical and numerical solutions for one-dimensional independent-oftime Schrödinger Equation

In this paper, the numerical solution methods of one- particale, one – dimensional time- independentSchrodinger equation are presented that allows one to obtain accurate bound state eigen values andeigen functions for an arbitrary potential energy function V(x). These methods included the FEM(Finite Element Method), Cooly, Numerov and others. Here we considered the Numerov method inmore details...

متن کامل

Two-dimensional solitary wave solution to the quadratic nonlinear Schrödinger equation

The solitary wave solution of the quadratic nonlinear Schrd̈inger equation is determined by the iterative method called Petviashvili method. This solution is also used for the initial condition for the time evolution to study the stability analysis. The spectral method is applied for the time evolution. Keywords—soliton, iterative method, spectral method, plasma

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002